Template-Directed Self-Assembly of 10-μm-Sized Hexagonal Plates

نویسندگان

  • Thomas D. Clark
  • Rosaria Ferrigno
  • Joe Tien
  • Kateri E. Paul
  • George M. Whitesides
چکیده

This article presents a strategy for the fabrication of ordered microstructures using concepts of design inspired by molecular self-assembly and template-directed synthesis. The self-assembling components are 4-μm-thick hexagonal metal plates having sides 10 μm in length (“hexagons”), and each template consists of a 4-μm-thick circular metal plate surrounding a central cavity, the perimeter of which is complementary in shape to the external edges of a two-dimensional, close-packed array of hexagons. The hexagons and templates (collectively, “pieces”) were fabricated via standard procedures and patterned into hydrophobic and hydrophilic regions using self-assembled monolayers (SAMs). Templated self-assembly occurs in water through capillary interactions between thin films of a nonpolar liquid adhesive coating the hydrophobic faces of the pieces. The hexagons tile the cavities enclosed by the templates, and the boundaries of the cavities determine the sizes and shapes of the assemblies. Curing the adhesive with ultraviolet light furnishes mechanically stable arrays having well-defined morphologies. By allowing control over the structures of the resulting aggregates, this work represents a step toward the development of practical methods for microfabrication based on self-assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoscale Self-Assembly: Capillary Bonds and Negative Menisci

This paper describes the self-assembly of hexagonal plates (with 2.7 mm wide sides) at the interface between perfluorodecalin (PFD) and water. All 14 different hexagons that can be made by permuting the number and location of the hydrophobic and hydrophilic faces were examined. The plates attracted one another by lateral capillary forces involving the menisci on the hydrophilic faces. The plate...

متن کامل

Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the “Capillary Bond”

This paper examines self-assembly in a quasi-two-dimensional, mesoscale system. The system studied here involves hexagonal plates (“hexagons”) of poly(dimethylsiloxane) (PDMS; 5.4 mm in diameter, 0.9-2.0 mm thick), with faces functionalized to be hydrophilic or hydrophobic, floating at the interface between perfluorodecalin (PFD) and H2O. The hexagons assemble by capillary forces originating in...

متن کامل

Shape-Selective Recognition and Self-Assembly of mm-Scale Components

Molecular recognition requires the mating of two different molecular surfaces, complementary in shape and surface properties (hydrophobicity, hydrogen-bonding capability, electrical potential). Molecular recognition is ubiquitous in molecular science, with examples from protein-ligand interactions to asymmetric catalysis.1-6 This paper describes the export of ideas taken from molecular recognit...

متن کامل

Templated self-assembly in three dimensions using magnetic levitation†

Although self-assembly (SA) in two dimensions (2D) is highly developed (especially using surfaces as a templates), SA in three dimensions (3D) has been more difficult. This paper describes a strategy for SA in 3D of diamagnetic plastic objects (mmto cm-sized in this work, but in principle in sizes from 10 mm to m) supported in a paramagnetic fluid by a non-uniform magnetic field. The magnetic f...

متن کامل

Engineered Solder-Directed Self-Assembly Across Length Scales

We report on recent progress in the directed self-assembly of discrete inorganic semiconductor device components. Different from prior research, the goal is to enable the integration of increasingly small dies while supporting unique-angle orientation and contact pad registration. The process is based on the reduction of surface free energy between liquid solder coated areas on the substrate an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002